Minimizer Extraction in Polynomial Optimization Is Robust
نویسندگان
چکیده
منابع مشابه
Data-driven Distributionally Robust Polynomial Optimization
We consider robust optimization for polynomial optimization problems where the uncertainty set is a set of candidate probability density functions. This set is a ball around a density function estimated from data samples, i.e., it is data-driven and random. Polynomial optimization problems are inherently hard due to nonconvex objectives and constraints. However, we show that by employing polyno...
متن کاملRobust design optimization by polynomial dimensional decomposition
This paper introduces four new methods for robust design optimization (RDO) of complex engineering systems. The methods involve polynomial dimensional decomposition (PDD) of a high-dimensional stochastic response for statistical moment analysis, a novel integration of PDD and score functions for calculating the secondmoment sensitivities with respect to the design variables, and standard gradie...
متن کاملActive Bayesian Optimization: Minimizing Minimizer Entropy
The ultimate goal of optimization is to find the minimizer of a target function. However, typical criteria for active optimization often ignore the uncertainty about the minimizer. We propose a novel criterion for global optimization and an associated sequential active learning strategy using Gaussian processes. Our criterion is the reduction of uncertainty in the posterior distribution of the ...
متن کاملA Polynomial Chaos Approach to Robust Multiobjective Optimization
Robust design optimization is a modeling methodology, combined with a suite of computational tools, which is aimed to solve problems where some kind of uncertainty occurs in the data or in the model. This paper explores robust optimization complexity in the multiobjective case, describing a new approach by means of Polynomial Chaos expansions (PCE). The aim of this paper is to demonstrate that ...
متن کاملOn the polynomial solvability of distributionally robust k-sum optimization
In this paper, we define a distributionally robust k-sum optimization problem as the problem of finding a solution that minimizes the worst-case expected sum of up to the k largest costs of the elements in the solution. The costs are random with a joint probability distribution that is not completely specified but rather assumed to be known to lie in a set of probability distributions. For k = ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2018
ISSN: 1052-6234,1095-7189
DOI: 10.1137/17m1152061